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Abstract

We propose a parallelized Annealed Particle Filter
method via heterogeneous computing (P-APF), to im-
plement real-time marker-less motion tracking based on
OpenCL framework. The overall computing procedure
in P-APF is decomposed into several computational
tasks with corresponding granularity. According to the
degree of parallelism, the tasks are assigned to standard
and attached processors respectively, to fully leverage
heterogeneous computing ability. A task latency hidden
strategy is used to further reduce time cost. Experiments
on different human motion datasets demonstrate that P-
APF can achieve real-time tracking performance with-
out losing accuracy. With an average acceleration ratio
of 106 compared to serial implementation, the time cost
basically remains constant with the growth of particle
number and view number in a limited range.

1. Introduction

3D marker-less motion tracking is one of the most
significant yet challenging tasks of visual human mo-
tion analysis. The applications range from virtual real-
ization, film animation to sports and medical treatment,
etc. Current works [7, 8, 9] mainly concern conducting
motion tracking accurately, while ignoring its compu-
tational efficiency for real-time application. Annealed
Particle Filter (APF) [2] is capable of recovering full
articulated body motion efficiently, however, as a parti-
cle filter method, its computational cost is prohibitively
large for practical application due to the evaluation to
likelihood function, which has to be performed once
at every time step for every particle. It has been a se-
vere bottleneck of APF. The emerging of heterogeneous
computing [4] and heterogeneous programming frame-
work such as Open Computing Language (OpenCL) [5]
provides an efficient way to widen this bottleneck.

In this paper, we propose to embed APF implemen-
tation for human motion tracking into heterogeneous
computing framework. The principal contributions of
this paper lie in two aspects. (1) Develop parallelized
annealed particle filter via heterogeneous computing to
conduct real-time marker-less motion tracking. (2) Use
task latency hidden strategy to overlap extra data trans-
fer time and computational time. Performance of the
proposed system is demonstrated by experiments con-
ducted on different human motion datasets with differ-
ent actions. Its performance was also tested in 2011
AMD China acceleration computing competition1, in
which we got the first place from more than 100 teams.

2. APF Based Human Motion Tracking

The articulated model of human body used in this pa-
per (Figure 1(a)) consists of 10 truncated cones (green),
representing limbs, torso and head, and 15 joints (red
points). This model has 31 DOFs comprising the po-
sition and orientation of the torso and the relative joint
angles between limbs. Figure 1(d) shows tracking result
under this model.

(a) (b) (c) (d)

Figure 1. Human motion tracking (a) model
(b) edge distance map (c) silhouette map (d) result

Tracking problem is formulated as one of estimating
the posterior probability distribution P+

t ≡ p(xt|y1:t)
1Website: http://accontest.eol.cn/.

21st International Conference on Pattern Recognition (ICPR 2012)
November 11-15, 2012. Tsukuba, Japan

978-4-9906441-0-9 ©2012 ICPR 2444



for the state xt of the human body at time t given
a sequence of image observations y1:t ≡ (y1, ..., yt).
In APF, distributions are represented by a set of 31D
particle vectors with associated normalized weights
{xit, πit}Ni=1, which are propagated over time using tem-
poral dynamics and assigned new weights according
to likelihood function. Then, APF searches for peaks
in the posterior distribution using simulated annealing.
The negative log-likelihood of silhouette (Figure 1(c),
generated by algorithm in [7]) is estimated by project-
ing a number of visible points on each limb into the
silhouette image and then computing the mean square
error (MSE) [3].

− log p(yt|xt) ∝ |{ξ}|−1
∑

ξ
(1−M(ξ))2, (1)

where {ξ} is the set of projected points and M is the
silhouette map. Edge-based likelihood is computed in a
similar way.

3. Parallelized Annealed Particle Filter

Heterogeneous architecture consists of standard pro-
cessor such as traditional multi-core CPU and attached
processors such as Graphic Processing Units (GPUs)
and Field Programmable Gate Arrays (FPGAs), which
are dedicated stream accelerators containing hundreds
of lightweight cores. Heterogeneous computing aims to
combine standard processor’s ability for general com-
puting and attached processors’ ability for high inten-
sive computing to get better performance for most ap-
plications. In this section we will formulate P-APF via
heterogeneous computing in detail.

3.1. Task Decomposition and Assignment

We firstly analyze conventional APF to find its paral-
lel part, the algorithm is decomposed into several tasks
with corresponding granularity as shown in Figure 2
(blue and green rectangles). We can then assign the gen-
eral computing tasks to standard processor (host) and
intensive computing tasks to attached processor (de-
vice). The criteria of each task’s assignment to host
or device is degree of parallelism (DOP), which is the
number of independent parts that can be computed in
parallel for each task. The first 5 tasks with highest
DOP are shown in Table 1, which will be assigned to
the device. Detailed description about each task’s DOP
is in the following.

1) 3D cones projection: project each 3D truncated
cone to every 2D camera plane for every particle, this
procedure is independent with each other, so its DOP is
Np ∗Ntc ∗Nview.

Table 1. The five tasks with highest DOP
Ntc: truncated cone number; Np: particle num-
ber; Nview: view number

3D cones Silhouette Edge Particle Skeleton
projection likelihood likelihood selection projection
Np ∗Ntc Np ∗Ntc Np ∗Ntc Np Ntc∗
∗Nview ∗Nview ∗Nview ∗ 2 ∗3 Nview

2) Compute silhouette likelihood for particle xit(i =
1, ..., Np) is reformulated as the following equation
from equation (1):

− log p(yt|xit) ∝
Nview∑
j=1

Ntc∑
k=1

|{ξ}|−1
∑
ξjk

(1−Mj(ξjk))
2,

(2)
where Mj is the silhouette image from view j. ξjk is
the set of projected points from truncated cone k to Mj .
In this task, silhouette likelihood should be computed
for every particle, so its DOP is Np ∗Ntc ∗Nview.

3) Compute edge likelihood: similar to the analysis
of 2), consider that ξjk is the set of projected points
along the edges of truncated cone k and computing
along two long sides of one specific cone is the same,
DOP of computing edge likelihood isNp∗Ntc∗Nview∗
2.

4) Particle selection is the task to check for angles ex-
ceeding anatomical joint limits and for inter-penetrating
limbs. We only check three pairs of limbs, so the DOP
is Np ∗ 3 .

5) Skeleton projection is the process to project each
truncated cone of the optimal model configuration xk to
the 2D camera plane, its DOP is Ntc ∗Nview.

We represent the procedure of P-APF by a flow chart
in Figure 2, the yellow rectangles is extra data transfer
tasks between host and device.

3.2. Parallel Computing on Attached Processor

In OpenCL platform model, each device has thou-
sands of processing elements within which computa-
tions on a device occur. For one specific task, paral-
lel computing on device should be arranged effectively
to maximize the use of attached processor’s highly in-
tensive computing ability. Here we just take silhou-
ette likelihood computing for example, it has a DOP of
Np ∗ Ntc ∗ Nview. In practice, Np can be several hun-
dred, Ntc is 10 in our human skeleton model and Nview
may take from 3 to 16. Considering factors such as data
reduce using shared local memory and algorithm ex-
pansibility on particle number, we choose to use a two-
dimensional workgroup whose indexes are view num-
ber and cone number, each workgroup is responsible
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Figure 2. Flowchart of P-APF

for the computing of one specific particle, as shown in
Figure 3.
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Figure 3. Workgroup index space

3.3. Hardware-independent Latency Hidden
Strategy

It pays for distributing tasks on host and device, that
is, some extra time overhead for data transfer between
host and device has to be considered (yellow rectan-
gles in Figure 2). For example, in order to compute
weights for each particle, edge and silhouette data must
be transferred to the device. Data transfer task between
host and device is notably very time-consuming, some-
times it even costs half of the time after parallelization.
Meanwhile, data transfer between host and hard disk or
cameras is also time-consuming when we want to con-
duct real-time processing. To tackle these problems, we
propose a task latency hidden strategy using task paral-
lelization.

To achieve optimal task latency hidden, we seek to
parallelize tasks on host, tasks on device and tasks for
data transfer without ignoring the dependency relations
among them. This can be formulated as a multi-thread
task scheduling problem, which aims to assign the tasks
to the threads so that the precedence relations are main-
tained and all of the tasks are completed in the shortest
time.

To complete the formulation, we need to know the
cost time Ci for each task Ti. However, Ci is not con-
stant, it varies with the performance of standard proces-

sor and attached processor. As a result, for one specific
machine we must run the algorithm first to get accu-
rate task time cost Ci. Then one computational task
can be represented by a task-time pair {Ti, Ci}. We get
a task schedule heuristically using Nview + 4 threads:
Nview threads for reading data from cameras, one main
thread for tasks on host, two threads for transfer edge
and silhouette data to device because they are indepen-
dent with each other, one thread for reading result data
of device.

4. Experiments

To demonstrate performance of P-APF for real-time
human motion tracking, we implement the other two
C++ versions of APF, one is the serial program (S-APF)
and the other is parallelized APF using multi-threads
on multi-core CPU (T-APF), which is different with
that using heterogeneous computing since CPU cannot
hold as many threads as attached processor (GPU). In-
tel Threading Building Blocks2 (TBB) is used to build
the program. A motion dataset3 with ground truth mo-
tion made by Brown University in [6] is used to quan-
titatively compare tracking accuracy and time cost with
different particle number Np. To analyze time cost for
different view number Nview, we use a more challeng-
ing motion dataset, PEAR, in which 16 calibrated cam-
eras with resolution of 704*576 capture more kinds of
actions including jumping, jogging and skipping. All
the experiments were carried out on a standard PC with
4-core CPU and AMD HD 7970 GPU.

4.1. Tracking Accuracy Evaluation

Weighted error measurement in [1] is used for ac-
curacy evaluation. Four trials of each experiment are

2Licensed under GPLv2 with the runtime exception
3http://www.cs.brown.edu/~ls/Software/
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performed in which Np was set to 200 and layer num-
ber 10. We plot the mean error at each frame and com-
pute an average error and standard deviation over all
500 frames in Figure 4. It is apparent that three imple-
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Figure 4. Performance of accurancy

mentations have the same tracking error. The average
error of about 77.3 millimeter is caused by low quality
silhouette data used here.

4.2. Time Cost and Scalability

We compare time cost per frame Tf over Np and
Nview with annealed layer number set to 10. Np or
Nview can’t be too less for successful tracking, so we
set Np ranging from 50 to 400 with 8 viewpoints and
Nview from 3 to 12 with 200 particles. We did four
trials with 100 frames for each configuration and plot
mean Tf in Figure 5. Average Tf over all particle num-
ber and view number is also computed.
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Figure 5. Time cost per frame

In Figure 5(a), with an average acceleration ratio of
106 (Tabel 2), Tf is 41 milliseconds for a common con-
figuration of Np 200, layer number 10, which achieves
real-time processing. Tf of P-APF remains basically
constant with increasing of Np and Nview while it in-
creases dramatically for the other two implementations,
which is the so-called “weak scalability” of parallel
program on heterogeneous architecture, that is, num-
ber of “light threads” on attached processor increases

with number of particle or view increasing, so the over-
all time cost remains basically constant or little incre-
ment for extra data transfer overhead. This is an attrac-

Table 2. Acceleration ratio on some Np
Particle number 100 150 200 250 300 350 400
Acceleration ratio 55 79 99 116 127 137 147

tive property of P-APF since applications with high di-
mensional configuration need more particles for higher
tracking accuracy, more views will contribute to accu-
racy as well. This property will not break down un-
til the available intensive computing resources are used
out. However, civil attached processor such as common
GPU has enough resources for general intensive com-
puting demand, as shown in Figure 5, it can hold a high
particle number of 400.

5. Conclusion and Future Work

In this paper we develop parallelized annealed parti-
cle filter via heterogeneous computing to conduct real-
time marker-less motion tracking and use task latency
hidden strategy to further reduce time cost. Exper-
iments on different motion datasets demonstrated its
real-time performance and scalability on particle and
view number. For future work, we plan to apply P-APF
to other high dimensional tracking problems.
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